RAD18 promotes DNA double-strand break repair during G1 phase through chromatin retention of 53BP1

نویسندگان

  • Kenji Watanabe
  • Kuniyoshi Iwabuchi
  • Jinghua Sun
  • Yuri Tsuji
  • Tokio Tani
  • Kazuaki Tokunaga
  • Takayasu Date
  • Mitsumasa Hashimoto
  • Masaru Yamaizumi
  • Satoshi Tateishi
چکیده

Recruitment of RAD18 to stalled replication forks facilitates monoubiquitination of PCNA during S-phase, promoting translesion synthesis at sites of UV irradiation-induced DNA damage. In this study, we show that RAD18 is also recruited to ionizing radiation (IR)-induced sites of DNA double-strand breaks (DSBs) forming foci which are co-localized with 53BP1, NBS1, phosphorylated ATM, BRCA1 and gamma-H2AX. RAD18 associates with 53BP1 and is recruited to DSB sites in a 53BP1-dependent manner specifically during G1-phase, RAD18 monoubiquitinates KBD domain of 53BP1 at lysine 1268 in vitro. A monoubiquitination-resistant 53BP1 mutant harboring a substitution at lysine 1268 is not retained efficiently at the chromatin in the vicinity of DSBs. In Rad18-null cells, retention of 53BP1 foci, efficiency of DSB repair and post-irradiation viability are impaired compared with wild-type cells. Taken together, these results suggest that RAD18 promotes 53BP1-directed DSB repair by enhancing retention of 53BP1, possibly through an interaction between RAD18 and 53BP1 and the modification of 53BP1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair.

Following irradiation, numerous DNA-damage-responsive proteins rapidly redistribute into microscopically visible subnuclear aggregates, termed ionising-radiation-induced foci (IRIF). How the enrichment of proteins on damaged chromatin actually relates to DNA repair remains unclear. Here, we use super-resolution microscopy to examine the spatial distribution of BRCA1 and 53BP1 proteins within si...

متن کامل

53BP1 promotes microhomology-mediated end-joining in G1-phase cells

Alternative non-homologous end joining (alt-NHEJ) was originally identified as a backup repair mechanism in the absence of classical NHEJ (c-NHEJ) factors but recent studies have demonstrated that alt-NHEJ is active even when c-NHEJ as well as homologous recombination is available. The functions of 53BP1 in NHEJ processes are not well understood. Here, we report that 53BP1 promotes DNA double-s...

متن کامل

Replication-Coupled Dilution of H4K20me2 Guides 53BP1 to Pre-replicative Chromatin

The bivalent histone modification reader 53BP1 accumulates around DNA double-strand breaks (DSBs), where it dictates repair pathway choice decisions by limiting DNA end resection. How this function is regulated locally and across the cell cycle to channel repair reactions toward non-homologous end joining (NHEJ) in G1 and promote homology-directed repair (HDR) in S/G2 is insufficiently understo...

متن کامل

Cohesin promotes the repair of ionizing radiation-induced DNA double-strand breaks in replicated chromatin

The cohesin protein complex holds sister chromatids together after synthesis until mitosis. It also contributes to post-replicative DNA repair in yeast and higher eukaryotes and accumulates at sites of laser-induced damage in human cells. Our goal was to determine whether the cohesin subunits SMC1 and Rad21 contribute to DNA double-strand break repair in X-irradiated human cells in the G2 phase...

متن کامل

KAP-1 promotes resection of broken DNA ends not protected by γ-H2AX and 53BP1 in G₁-phase lymphocytes.

The resection of broken DNA ends is required for DNA double-strand break (DSB) repair by homologous recombination (HR) but can inhibit normal repair by nonhomologous end joining (NHEJ), the main DSB repair pathway in G1-phase cells. Antigen receptor gene assembly proceeds through DNA DSB intermediates generated in G1-phase lymphocytes by the RAG endonuclease. These DSBs activate ATM, which phos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2009